Liquid-Vapor Equilibria in Mixtures of Carbon Tetrachloride and Chloroform with Dimethyl Sulfide and Diethyl Sulfide

Donald F. Gray, Nell F. Pasco, and Arthur G. Williamson*

Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand

Vapor pressures at 298.15 K and the excess Gibbs energies derived therefrom are reported for mixtures of carbon tetrachioride + dimethyl sulfide, carbon tetrachioride + diethyl sulfide, chioroform + dimethyl sulfide, and chioroform + diethyl sulfide. All four systems show negative deviations from ideality. The especially large deviations in the chioroform systems are interpreted in terms of hydrogen bonding.

Introduction

The studies reported here parallel earlier work (1-5) on binary mixtures of di-*n*-alkyl ethers with carbon tetrachloride and with chloroform and complement measurements already reported (5, 6) of other properties of mixtures of di-*n*-alkyl sulfides with carbon tetrachloride with chloroform. Among other things these results can be used to extend the data base for mixture property prediction provided by UNIFAC (7) to include an additional structural group CH₂S analogous to the CH₂O group used by Fredenslund et al. for the ethers.

Materials

Carbon tetrachloride and chloroform were purified as described by Beath and Williamson (1, 3). The alkyl sulfides were purified as described by Gray and Williamson (6). All four compounds were examined by gas-liquid chromatography on a 2-m column of 5% SE 30 and gave only one peak. No measurable changes (less than 0.05 mmHg) in vapor pressure were observed on isothermal distillation of up to 70% of a sample of each pure compound.

Experimental Section

The total vapor pressures of mixtures of known overall composition were measured by using the static method and apparatus described by Bissell and Williamson (4). The temperature scale used in this work was established by calibrating an 11-junction copper-constantan thermocouple against the vapor pressure of carbon tetrachloride using the published data of Marsh (8). Pressures were measured on a 20-mm-bore mercury manometer with a Wild cathetometer and are believed to be accurate to $\pm(5-25)$ Pa including any uncertainty in temperature from measurement to measurement.

Results

Vapor pressures of the pure compounds are shown in Table I where they are compared with published data. Table II shows the values of the physical properties of the pure compounds used in calculating the vapor-phase fugacities and subsequently the excess Gibbs energies from the measurements on the mixtures. The raw measurements on the mixtures are recorded in Table II in which the first two columns give the amounts of each component present in the vapor pressure cell (whose total volume was $143 \pm 1 \text{ cm}^3$) and the

Table I.	Physical	Properties	of Pure	Substances	at 25	°C
----------	----------	------------	---------	------------	-------	----

compound	vap press./Pa	liq vol/ cm³ mol ⁻¹	second virial coeff/ cm ³ mol ⁻¹
carbon tetrachloride	15227 ± 3^a (8)	97.1ª (12)	-1605ª (13)
chloroform	26 254 ± 5°	80.7 ^a (12)	-1115° (13)
	26217 ± 34^a (4)		
	$26241\pm25^a(10)$		
dimethyl sulfide	64320 ± 25^a	73.8 ^a (12)	-904° (13)
diethyl sulfide	7852 ± 4^{a}	108.5ª (12)	-2204^{a} (13)

 a Used in analysis of our results. Where no reference is given, the figures are for properties measured in this study.

third column gives the measured vapor pressure. From these data compositions of the phases in equilibrium the excess Gibbs energy were calculated by a modification (4) of Barker's (9) procedure which gives the parameters g_n in the equation (11)

$$G^{\mathsf{E}}/RT = x(1-x)\sum_{n=0}^{m} g_n(1-2x)^n \tag{1}$$

where x is the mole fraction of halocarbon.

Table II also shows the liquid and vapor compositions for each run, the observed vapor pressure, and the differences between the measured vapor pressures and those computed by using activity coefficients derived from eq 1 with the parameters given in Table III. The values of the parameters in eq 1 for the various mixtures are shown in Table III along with the values of σ defined by the relation

$$\sigma = \left[\sum (\boldsymbol{p}_{\text{exptl}} - \boldsymbol{p}_{\text{calcd}})^2 / (N - \boldsymbol{m})\right]^{1/2}$$
(2)

where N is the number of experimental points and m is the number of parameters. In each case the number of parameters is that which minimizes σ . The excess Gibbs energies generated from eq 1 with the parameters of Table III are shown in Figure 1.

Discussion

The excess properties of the mixtures of dialkyl sulfides with either carbon tetrachloride or chloroform are similar in sign and magnitude to those for the corresponding ether mixtures and suggest similar relatively strong interactions. Hydrogen-bond formation between sulfides and chloroform has been confirmed by NMR spectroscopy by Jolley et al. (4).

Earlier measurements on binary mixtures of ethers, hydrocarbons, and chlorocarbons were interpreted (4) by using relations based on the quasi-lattice treatment of Barker (15) and although reasonably good correlations could be obtained among the systems for which data had been used in fitting the equations, extrapolation to other systems with the same interacting groups in different configurations was not then regarded as successful.

The later development of the UNIFAC method by Fredenslund et al. (7) revived our interest in group contribution correlations. For this reason we have used Fredenslund's program

Table II.	Vapor	Pressures	and	Compositions	of	Mixtures at 2	5 °C		
					Dir	methyl Sulfide	(1) +	Chloroform	(2)

$n(C_2H_6S)/r$	nol $n(0)$	CHCl ₃)/mo	l p/	Pa	<i>x</i> ₂	<i>y</i> ₂	(p _{ex}	$p_{tl} - p_{calcd}$)/Pa
0.041774	2 (0.0	64	320					
0.041774	2 (0.005 196 1	57	900	0.1168	0.0286		-3	
0.041774	2 (0.0124738	50	830	0.2385	0.0756		5	
0.041 774	2 0	0.0208489	44	876	0.3411	0.1366		9	
0.041774	2 (0.031 735 3	39	657	0.4085	0.1909		-61	
0.057799	3 (0.039 008 4	41	090	0.4383	0.2191		60	
0.031.945	5 0	0.039.008.4	34	156	0.5556	0.3568		-21	
0.022.192	4 0	0390084	31	180	0.6424	0.4835		10	
0.013.084	- C	039 008 4	28	304	0.0424	0.4000		-10	
0.013084		0.0000000	20	609	0.7520	0.0000		-10	
0.004 929		0390084	20	002 954	0.0001	0.0019		J	
0.0			Disthul Su	16:Ja (1)	+ Chlansform (9)				
n(C.H.S)/1	nol n(C	HCl.)/mol	Dietnyi Su		+ Chloroform (2)		(n		/Da
<i>n(041100)/1</i>		21101 ₃)/ 1101	<i>p</i> /1	L a	×2	<i>y</i> ₂	Pex	$ptl = P_{calcd}$	/ra
0.034 184	().0	78	52					
0.034184	(0.004212	83	55	0.1090	0.1704		5	
0.034184	(0.012002	96	501	0.2580	0.4223		1	
0.034184	(0.020468	110	41	0.3720	0.5985		-15	
$0.034\ 184$	(0.033304	131	43	0.4907	0.7492		7	
0.034184	().049 494	153	31	0.5773	0.8339		16	
0.028256	().039 101	150	65	0.5889	0.8436		3	
0.018 888	(0.039 101	174	20	0.6704	0.9009		-13	
0.011 384	0	0.039 101	20 2	20	0.7711	0.9491		-22	
0.004 339	0	0.039 101	237	64	0.8974	0.9841		42	
0.0	0).039101	262	54					
		Dir	nethyl Sulfide	(1) + Ca	arbon Tetrachlorid	e (2)			
$n(C_2H_6S)/n$	nol $n($	$(CCl_4)/mol$	p/	Pa	<i>x</i> ₂	${\mathcal{Y}}_2$	(p _{ex}	$p_{tl} - p_{calcd}$	/Pa
0.040 525	3 0	0.0	64 3	352					
0.040525	3 0	0.0050155	58	122	0.1165	0.0274		-11	
0.040 525	3 0	.0097086	53 5	514	0.2022	0.0532		1	
0.040 525	3 0	.0164455	483	345	0.2986	0.0982		6	
0.040 525	3 0	.023 379 5	44 5	296	0.3755	0.1244		-3	
0.040 525	3 0	033 406 6	398	375	0.4605	0.1718		Õ	
0.026512	1 0	0337947	343	364	0.5705	0.2502		-3	
0.008816	4 Õ	0337947	236	306	0.8019	0.5283		16	
0.005.850		033 794 7	21 ()55	0.8597	0,6224		-14	
0.002.021	5 0 1 0	033 794 7	179	202	0.0001	0.0224		_5	
0.0	• 0	0337947	15	220	0.0400	0.0200		-0	
0.0	0	.0007947 D:	107 منابعا وساف	(1) + 0~		(0)			
n(C.H.S)/r	nol n(CCL)/mol	n/	$(1) \neq 0$ a Pa	ruon Tetrachioride	(2)	(n		/P ₈
		0.0147/1101	<i>p</i> /	1 a	×2	<i>y</i> 2	(Pex)	pti Pealed)	/10
0.038 240	L 0	.0	78	352					
0.038 240	L 0	.004 106 7	82	299	0.0964	0.1459		7	
0.038240	L 0	.0097268	88	343	0.2018	0.2981		-11	
0.038 240	L 0	.0157207	93	381	0.2901	0.4169		-8	
0.038 240	L 0	.0248344	10 ()81	0.3924	0.5422		2	
0.038 240	L 0	.030 000 0	108	380	0.4973	0.6556		23	
0.032 546	5 0	.0355116	11 (020	0.5204	0.6785		-16	
0.0228700) 0	.0355116	117	732	0.6066	0.7573		-1	
0.014 468 9) 0	.0355116	126	301	0.7087	0.8376		8	
0.008228	L 0	.0355116	134	194	0.8102	0.9046		6	
0.003 233 2	2 0	.0355116	144	154	0.9156	0.9620		3	
0.0	õ	.035 511 6	15 2	216				č	
Table III. Paramete of Table II	rs in Eq 1 Fit	ted to the	Data		Table IV. UNII	FAC Parameter Group Interacti	rs for Alk	yl Sulfid eters	e Groups
mixture	g ₀ g ₁	g_2	$g_3 \sigma/{ m Pa}$	N	СН	3 CH2	CH ₃ S	CH_2S	CCl ₄

mixture	<i>g</i> 0	g_1	g_2	g 3	σ/Pa	N
$\overline{C_2SH_6 + CCl_4}$	-0.1594	0.0268			10	9
$C_4SH_{10} + CCl_4$	-0.2305				11	10
$C_2SH_6 + CHCl_3$	-0.8560	-0.0666	0.0438		37	9
$C_4SH_{10} + CHCL_3$	-0.9234	-0.0928	0.0296	0.0767	24	9

.

to determine the best fit UNIFAC parameters for the thioether systems. In this analysis we used the same division of the molecules into groups (CH₃, CH₃S, CH₂S, CH₂) as has been used by Fredenslund. As for the ethers, CH₃S and CH₂S groups have been assumed to be identical from the energetic point of view. The data on the thioether mixtures with CCl₄ were first used to determine the RS/CCl₄ and RS/R' parameters. These were then used with the data for the chloroform mixtures to determine the RS/CHCl₃ parameters as shown in Table IV.

	CH_3	CH_2	CH_3S	CH_2S	CCl ₄
CH ₃	0.0	0.0	183.7ª	183.7ª	104.3
CH_2	0.0	0.0	183.7°	183.7ª	104.3
CH_3S	-3.159^{a}	-3.159^{a}	0.0	0.0	9.994ª
CH_2S	-3.159^{a}	-3.159ª	0.0	0.0	9.994ª
CCl_4	-78.45	-78.45	19.65^{a}	19.65^{a}	0.0
	CH3	CH ₂	$CH_{3}S$	CH_2S	CHCl ₃
CH_3	0.0	0.0	183.7 ^b	183.7^{b}	24.90
CH_2	0.0	0.0	183.75	183.7^{b}	24.90
CH_3S	-3.159^{b}	-3.159^{b}	0.0	0.0	-156.7°
CH_2S	-3.159^{b}	-3.159^{b}	0.0	0.0	-156.7°
CHCl ₂	36.70	36.70	-13.87°	-13.87°	0.0

^aParameters evaluated from our experimental data on CCl₄ + R₂S. ^bParameters from CCl₄ mixtures. ^cParameters evaluated from our experimental data on CHCl₃ + R₂S.

	halo-	alkyl	sulfide	haloo	carbon
	carbon		$\gamma_1 -$		γ_2 -
	x_2	γ_1	$\gamma_1^{\mathrm{calcd}}$	γ_2	γ_2^{calcd}
$(CH_2)_2S + CCL$	0.1165	0.997	0.0	0.872	0.001
(0.2022	0.991	0.001	0.901	0.0
	0.2986	0.982	0.002	0.928	-0.001
	0.3755	0.972	0.001	0.945	-0.002
	0.4605	0.961	0.001	0.961	-0.001
	0.5705	0.943	0.0	0.977	-0.001
	0.8019	0.906	0.0	0.997	0.001
	0.8597	0.896	-0.002	0.998	-0.001
	0.9468	0.883	0.0	0.999	0.0
$(C_2H_5)_2S + CCl_4$	0.0964	0.999	0.001	0.829	0.006
	0.2018	0.989	0.0	0.862	0.0
	0.2901	0.980	0.001	0.890	-0.002
	0.3924	0.965	0.003	0.919	-0.002
	0.4973	0.947	0.005	0.946	0.0
	0.5204	0.938	0.001	0.947	-0.004
	0.6066	0.919	0.002	0.965	-0.002
	0.7087	0.891	0.002	0.981	-0.001
	0.8102	0.859	-0.002	0.991	-0.001
	0.9156	0.824	-0.005	0.999	0.0
$(CH_3)_2S + CHCl_3$	0.1168	0.993	0.008	0.532	0.103
	0.2385	0.964	0.025	0.607	0.073
	0.3411	0.921	0.041	0.678	0.054
	0.4085	0.882	0.048	0.726	0.042
	0.4385	0.866	0.054	0.750	0.040
	0.5560	0.778	0.062	0.832	0.026
	0.6424	0.707	0.067	0.889	0.019
	0.7520	0.612	0.070	0.945	0.011
	0.8887	0.498	0.075	0.989	0.003
$(C_2H_5)_2S + CHCl_3$	0.1090	0.990	-0.003	0.502	-0.096
	0.2580	0.950	-0.013	0.603	-0.084
	0.3720	0.896	-0.026	0.682	-0.074
	0.4907	0.820	-0.043	0.769	-0.055
	0.5773	0.749	-0.061	0.833	-0.037
	0.5889	0.738	-0.065	0.841	-0.036
	0.6704	0.661	-0.083	0.896	-0.020
	0.7711	0.566	-0.099	0.951	-0.006
	0.8974	0.462	-0.095	0.994	0.003

Table V. Comparison of "Measured" Activity Coefficients with Those Recovered from UNIFAC Parameters

Table VI. Comparison of UNIFAC and Barker Fits

	$G^{E}(\text{at } x = 0.5, T = 298 \text{ K})/$ J mol ⁻¹					
mixture	exptl	Barker zeroth	UNIFAC			
$n - C_6 H_{14} + n - C_{16} H_{34}$	-69	-68ª	-238			
$CHCl_{3} + CCl_{4}$	107	106ª	97^{b}			
$n - C_8 H_{14} + CCl_4$	144	143ª	58^{b}			
$n - C_{\theta} H_{14} + CHCl_3$	342	343°	308^{b}			
$n - C_7 H_{16} + CCl_4$	122	118ª	34^b			
$n - C_7 H_{16} + CHCl_3$	312	315ª	281			
$n - (C_3 H_7)_2 O + CCl_4$	-57	-54^{a}	-55^{b}			
$n - (C_3 H_7)_2 O + CHCl_3$	-537	-529ª	-424^{b}			
$n - C_8 H_{18} + CCl_4$	95	100	4			
$(CH_3)_3CCl + CCl_4$	268	373	16			
$(\mathrm{ClC}_{2}\mathrm{H}_{4})_{2}\mathrm{O}+n\cdot\mathrm{C}_{6}\mathrm{H}_{14}$	1317	238	546			

^a Data used in determination of Barker parameters. ^b Data used in determination of UNIFAC parameters.

The quality of the fit is shown in Table V where the input and recovered activity coefficients are compared.

As can be seen, the results for the carbon tetrachloride system are reproduced quite well and those for the chloroform mixtures are recovered less well. This may result from the accumulation of errors in the successive fitting of parameters

Figure 1. Excess Gibbs energies of mixtures of alkyl sulfides + halocarbons.

or it may merely be a reflection of the very much larger deviation from ideality in the chloroform mixtures.

For comparison we show in Table VI the correlations achieved using the zeroth approximation of Barker's treatment and UNIFAC for a range of systems. The significant comparisons are those for systems data for which were not used in establishing the parameters for the correlation. As can be seen, the zeroth approximation to Barker's treatment and the UNIFAC are not very different in most of their predictions.

Registry No. CCI₄, 56-23-5; CHCI₃, 67-66-3; (OH₃)₂S, 75-18-3; (C₂H₅)₂S, 352-93-2.

Literature Cited

- Beath, L. A.; Williamson, A. G. J. Chem. Thermodyn. 1969, 1, 51.
 Beath, L. A.; O'Neill, S. P.; Williamson, A. G. J. Chem. Thermodyn. 1969, 1, 293.
- (3) Beath, L. A.; Watson, I. D.; Williamson, A. G. Proceedings of the 1st International Conference on Thermodynamics and Thermochemistry; Polish Scientific Publishers: Warsaw, 1971; p 773.
- (4) Bissell, T. G.; Williamson, A. G. J. Chem. Thermodyn. 1975, 7, 131, 815.
- (5) Gray, D. F.; Watson, I. D.; Williamson, A. G. Aust. J. Chem. 1968, 21. 379.
- Gray, D. F.; Williamson, A. G. Aust. J. Chem. 1975, 28, 2299.
- Fredenslund, A.; Gmehling, J.; Rassmussen, P. Vapour Liquid Equilibria (7) Using UNIFAC; Elsevier: Oxford, U.K., 1977.
- (8)
- Marsh, K. N. Trans. Faraday Soc. 1966, 64, 883. Barker, J. A. Aust. J. Chem. 1953, 6, 207.
- McGlashan, M. L.; Prue, J. E.; Sainsbury, I. E. Trans. Faraday Soc. (10) 1954, 57, 588.
- (11) Redlich, O.; Kister, A. T. Ind. Eng. Chem. 1946, 40, 346.
 (12) Timmermans, J. Physico Chemical Constants of Pure Organic Compounds; Elsevier: Oxford, U.K., 1956, Vol. I.; 1965, Vol. II. (13) Dymond, J.; Smith, E. B. Virlal Coefficient of Gases; Oxford University
- Press: London, 1969. (14) Jolley, K. W.; Hughes, G. M.; Watson, I. D. Aust. J. Chem. 1974, 27,
- 287. (15) Barker, J. A. J. Chem. Phys. 1953, 21, 1391.

Received for review August 6, 1987. Accepted February 22, 1988.